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Simple random matrix model for the vibrational spectrum of structural glasses
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To better understand the surprising low-frequency vibrational modes in structural glasses, where the density
of states D(ω) deviates from mean field predictions, we study the spectra of a large ensemble of sparse random
matrices where disorder is controlled by the distribution of bond weights and network coordination. We find
D(ω) has three regimes: a very low-frequency regime that can be predicted analytically using extremal statistics,
an intermediate regime with quasilocalized modes, and a plateau in D(ω). When there is a finite probability of
bond weights approaching zero strength, the intermediate regime displays a scaling consistent with D(ω) ∼ ω4,
independent of network coordination and system size, just as in simulated structural glasses.
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I. INTRODUCTION

The vibrational spectra of disordered glassy materials ex-
hibit universal features. Although these features govern the
mechanical response and provide insight into mechanisms for
material failure, their origin remains poorly understood.

Perhaps the most well-studied feature of the density of
vibrational states D(ω) is the boson peak, which is an excess
of vibrational modes above the Debye prediction, D(ω) ∝
ωd−1 [1–3]. In jammed packings the frequency at which
the peak occurs, ω∗, scales linearly with the average excess
number of contacts δz above the isostatic point where the
number of constraints equals the degrees of freedom [2,4,5].
Additionally, the eigenvector statistics of modes in the boson
peak follow a universal distribution [6].

Recently, another universal feature has been identified in
simulations of low-dimensional jammed systems, D(ω) ∼
ω4 below ω∗ [7–9], which deviates from recent mean-field
calculations for the spectra in infinite dimensions that predict
D(ω) ∼ ω2 [10,11]. This interesting behavior has also been
found in Heisenberg spin glass systems [12]. Understanding
this regime is important, because the vibrational modes are
quasilocalized and help govern flow and failure in disordered
solids [1,12–17].

Given the success of random matrix theory in predicting
universal features in other physical systems [18,19], it is
natural to wonder if a random matrix model may also explain
the ω4 scaling in jammed packings. Other features, including
the boson peak, have already been understood in terms of
Euclidean random matrices, which are dynamical matrices for
a set of points that are randomly and uniformly distributed in
space [20].

Although there are generic arguments that the global min-
ima of random functions should have a spectrum that scales
as ω4 [21], we would like to construct a random matrix model
to provide insight into how features of the ω4 region, such
as the prefactor or the location of the scaling regime, change
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with parameters such as the excess coordination δz. Such
an understanding is important for predicting how material
preparation protocols alter the mechanical response of glassy
materials.

II. RANDOM MATRICES

We study random matrices that share three important fea-
tures with the dynamical matrix: they are symmetric, posi-
tive semidefinite, and force balancing. In higher dimensions,
force balance corresponds to d sum rules on partial sums
of entries in each row of a matrix, while in one dimension,
the force-balancing restriction simply requires the sum over
all the entries in a row must be zero [1]. This rule is also
obeyed by standard or weighted Laplacians, Lij , which are
also symmetric and positive semidefinite. They are defined by

Lij =
⎧⎨
⎩

−kij i and j are connected,∑
l �=i kil i = j,

0 otherwise,
(1)

where kij is the independently chosen random weight of
the edge between particles i and j and in the special case
of the standard Laplacian, kij = 1 [22]. Standard Laplacian
matrices are well studied and possess distinctive vibrational
spectra [23–26], so we focus on weighted Laplacians for the
remainder of this article.

In order to calculate the Laplacian we must specify the
topology of the underlying graph. Although recent advances
have been made in analytically characterizing the spectra of
Laplacians on an Erdős-Rényi graph [27,28], Erdős-Rényi
networks are not locally isostatic, because a significant frac-
tion of nodes are undercoordinated (fewer than isostatic coor-
dination, zc = 2d), which leads to highly localized excitations
that are not seen in jammed packings [27].

Instead, we consider the weighted Laplacian on a zc-
regular graph with a small number of additional edges, or
crossbonds. Since weighted Laplacians obey only one sum
rule, they are effectively one-dimensional (1D), and zc = 2.
The number of additional bonds is δzN where N is the
number of points and δz is the excess coordination.
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FIG. 1. The rescaled density of states, D(ω′) where ω′ = ωN ,
for the two-regular graph with N = 16, 64, 256, 1024, and 4096
and α = 0, normalized by system size, N , averaged over at least
106 matrices. The analytic prediction for the low-frequency scaling
is shown as the black dashed line. In the upperleft we have a sketch
of a 1D chain with periodic boundary conditions (the open circles are
the same node) Inset: Unscaled density of states, D(ω).

Another important control parameter is the distribution of
the edge weights and, in particular, the weight of this distribu-
tion near zero. We choose to parametrize this distribution as
a power law with exponent α, normalized so that the mean is
1, ρ(k) ∝ kα on [0, α+2

α+1 ]. A uniform distribution corresponds
to α = 0, and we consider only normalizable distributions,
α > −1.

A. Finite size scaling for the weighted ring

We first study the finite size scaling of the low-frequency
excitations at isostaticity, when δz = 0 and the underlying
network topology is simply a ring of size N . Although this
is a well-studied model, we believe its finite-size scaling can
provide insight into the case with δz > 0.

The inset to Fig. 1 shows the sample averaged density of
states for α = 0, calculated via diagonalization of the matrix,
as a function of system size N , averaged over 2×106 matrices.
The main panel shows the sample averaged density of states as
a function of the normalized frequency, ω′ = ωN , highlight-
ing a region of power-law scaling at the lowest frequencies
that disappears in the thermodynamic limit.

We hypothesize that the lowest-energy mode on a weighted
ring is well approximated by a stretching of the two weakest
bonds, with all other bond lengths relatively fixed. We expect
this to be the case when α � 0, so that the weight of the lowest
two bonds are well separated from bonds with larger values of
kij , especially in the limit of low ω, ω < N− 2α+3

4α+3 .
If the two weakest bonds have strengths k1 and k2 and

are separated by m nodes, the frequency of this mode is√
N (k1+k2 )
m(N−m) . As we show in the appendices, one can use ex-

tremal statistics to find the exact distribution of the weakest
bonds on the ring to predict that the low-frequency density of
states scales as

D(ω) ∝ N2α+3ω4α+3. (2)

For a uniform distribution of bond weights (α = 0), the
contribution of these modes to the density of states scales as
(Nω)3. The scaling of Eq. (2), using α = 0, is shown as the
black dashed line in Fig. 1.

FIG. 2. The density of states for fixed system size (N = 1000)
and changing δz = 0.1, 0.168, 0.282, 0.476, 0.8. In the upper left
we have a sketch of a 1D chain with periodic boundary conditions
(the open circles are the same node) with additional bonds. Inset:
The density of states, D(ω), for fixed δz = 0.1 and changing system
size N = 20, 60, 120, 240, 500, 1000, 2000, and 4000.

B. Crossbonded ring with uniform bond weights

We hypothesize that adding a small number of crossbonds
alters the low-frequency behavior by reducing the effective
distance between the two weakest bonds. In the case of δz = 0,
the two weakest bonds separate the ring into two segments that
can move relative to one another at nearly zero cost, but if a
crossbond connects those two segments, it will significantly
increase the energy of that mode. Therefore, the weak bonds
that contribute to low-frequency modes must both be in a
segment between crossbonds. Because there are Nδz such
segments, we expect that crossbonds give rise to an extensive
number of low-energy modes, so that the scaling regime de-
scribed in the previous section persists in the thermodynamic
limit.

We search for very low-weight edges that generate a two-
cut of the network: two edges that, if removed, disconnect
the network. In the appendices, we show the low-frequency
density of states scales as

Dα (ω) ∝
(

1

δz

)2α+3

ω4α+3, (3)

independent of system size. In this equation, the term 1
δz

takes the place of the term proportional to system size in the
weighted ring [Eq. (2)]. The excess coordination effectively
rescales the system, promoting a finite size effect seen in the
vibrational spectrum of the ring to a thermodynamic property
of the crossbonded system.

To test the universal form predicted by Eq. (3), we com-
puted the spectrum D(ω) for rings with crossbonds and uni-
form bond weights (α = 0). For each value of δz and N we
generated between 105 and 2×106 matrices, [29] with inde-
pendently chosen weights and uniformly random placements
of the endpoints of the Nδz/2 crossbonds. The inset to Fig. 2
displays plots of the sample-averaged density of states D(ω)
for fixed δz = 0.1 as N increases. This example plot supports
the convergence of D(ω) to a gapless distribution as N → ∞.
The main panel of Fig. 2 displays the computed density of
states (solid lines) for large N (N = 1000) and varying δz.
The dashed lines in Fig. 2 show fits of the form D(ω) ∝ ω3 to
the low-frequency region, as predicted by Eq. (3). These fits
are in good agreement with the computed spectra.
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FIG. 3. (a) The density of states, D(ω), rescaled by δz, ω′ =
ω/δz. The blue dashed line indicates the transition from the ω3

regime to the ω4 regime, and the black dashed line indicates the
transition to the plateau. The inset shows the scaling of ω∗ and ωe

with δz is linear. (b) The inverse participation ratio (IPR) rescaled by
δz. The IPR approaches a quasilocalized plateau in the ω3 region.

Based on Eq. (3) and the more complete form of the density
of states derived in Appendix B, we expect a collapse of D(ω)
when frequencies are scaled by δz, for α = 0. Figure 3(a)
shows the density of states for the scaled frequency, ω =
ω/δz. For δz = 0.168 we numerically identify a frequency ωe

that best separates the ω3 scaling regime from the remaining
spectrum. Equation (3) then predicts that all other cutoff
frequencies should scale linearly with δz, which is in good
agreement with the data as shown by the open squares in
Figs. 2 and 3(a).

In addition to the crossover at ωe, there is a second
crossover where D(ω) flattens to a plateau. In jammed
packings at zero temperature, where the boson peak occurs at
the onset of the plateau, ω∗ is often defined as the frequency at
which the density of states attains a fixed fraction f (typically
25%) of its value in the plateau [30]. We use that same
definition here with f = 0.25.

In many disordered solids, numerical evidence suggests
ω∗ ∝ δz [2,5]. To check whether this is also true for our
matrices, we plot the density of states as a function of the
rescaled frequency ω′ = ω/δz, for various values of δz, shown
in Fig. 3(a). We see a good collapse of the three regions,
suggesting that both crossovers are linear in δz, which is also
highlighted by the inset to Fig. 3(a).

Importantly, this confirms that although the intermediate
region between the two crossover frequencies spans less than
a decade in frequency, it is well defined and does not change as
a function of excess coordination or system size. Specifically,
these results mandate the following functional form for the
density of states in our random matrix model with α = 0:

D(ω) =
⎧⎨
⎩

(
ω
δz

)3
ω � ωe

∝ ωψ ωe � ω � ω∗
∝ const ω∗ � ω

. (4)

FIG. 4. The density of states for α = −0.4, −0.2, 0, 0.25, 0.5,
1, and 2, with δz = 0.1. Inset: D(ω′ = Aω4α+3) for the same values
of α as in the main figure, where A is the coefficient predicted in
Appendix B. The black dashed line is the predicted scaling for the
low-frequency regime.

To extract the scaling of D(ω) below the boson peak, we
fit D(ω) to this functional form and extract the best-fit ψ for
each value of δz (see Table I in Appendix B). We find that
all curves are consistent with ψ = 4.0 ± 0.05 for frequencies
ωe � ω � ω∗. This suggests D(ω) ∝ ω4, just as seen below
the plateau in simulations of jammed packings.

Given the striking similarities between the density of states
in this simple model and jammed packings, we would also
like to know if the eigenvector statistics are similar. In jammed
systems, many modes at frequencies below the boson peak are
quasilocalized [30]. This is quantified by the inverse partici-
pation ratio (IPR), Y (ω) = ∑

i v
4
i /(

∑
i v

2
i )2, where v is the

vector associated with the eigenfrequency ω. In Fig. 3(b) the
very low-frequency regime of the IPR plateaus, and the value
of this plateau scales with δz, indicating that only about 1

δz

nodes are participating in the vibration. We have also shown
in the appendices that the value of the IPR is independent of
system size in this quasilocalized regime.

Interestingly, the intermediate region exhibits values of
IPR that are typically associated with quasilocalized exci-
tations. Moreover, the size of those excitations seems to
decrease as δz increases. In jammed solids, an outstanding
open question is how the size of localized excitations changes
as one approaches the jamming transition.

C. Crossbonded ring with power-law bond weights

Having a simple constructive model that reproduces many
features of the vibrational modes in jammed packings is
useful, because we can vary the model and ask what features
are necessary to generate the ω4 scaling in the density of
states. One natural choice is to perturb the distribution of bond
strengths away from the uniform distribution by changing the
power-law exponent α.

For α > 0, very weak bonds become rare, and the as-
sumptions that lead to Eq. (3) break down. Numerically, we
observe that a gap appears to open up in the spectrum as α

increases, as seen in Fig. 4. For α < 0, we expect Eq. (3)
should still hold, as shown by the numerical data in the inset
of Fig. 4. In this case, however, the crossover frequency no
longer scales linearly with δz, and so the power-law scaling
between ωe and ω∗, the exponent ψ in Eq. (4), is no longer
independent of δz. In other words, an intermediate regime
consistent with D(ω) ∝ ω4, independent of δz, is possible
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only for α = 0. It seems that having finite probability of bonds
with weight approaching zero provides for approximate ω4

scaling.

III. DISCUSSION

In this article, we propose a simple random matrix model
that is locally nearly isostatic and captures features of the
vibrational states of disordered packings that are typically
associated with marginality. Specifically, the model recapit-
ulates a plateau in the density of states above ω∗ and a regime
consistent with ω4 scaling immediately below that. Our model
also has a second crossover frequency ωe, below which D(ω)
scales as ω3.

The modes in this extremely low-frequency regime are
governed by extremal statistics, and so we can calculate their
properties analytically. This allows us to demonstrate that ωe

scales linearly with excess coordination δz if and only if the
weak bonds are uniformly distributed, suggesting that ω4 seen
in jammed packings arises due to a special, self-organized
distribution of the weakest bonds.

Of course, jammed packings only exist in dimensions
greater than unity. Above one dimension, the bond between
particles is described by a tensor and not a scalar weight.
The d by d interaction block that corresponds to a sin-
gle bond in the Hessian matrix can be written as Hijαβ =
−V ′′|u‖|2 − V ′

rij
|u⊥|2. The first term is often referred to as

the stiffness, while the second term is called the prestress
term [31].

Interestingly, observations in three-dimensional jammed
packings suggest that the ω4 regime exists only when the
V ′ term is unperturbed; even very small perturbations to the
prestress [3] open up a gap in the density of states [32]. This
suggests that a self-organized balance between the stiffness
and prestress must occur in systems near isostaticity. More-
over, the stiffness is always positive, and the prestress always
decreases the entries in the Hessian, so it is plausible that
the prestress term is driving some interactions to be very
weak near isostaticity. This is similar to our simple model
where self-organized weak interactions also dominate the
low-energy excitations. Therefore, it may be the case that
the fine-tuning of α necessary in our model corresponds to
fine-tuning in the prestress in real glasses. To investigate this
possibility, future research will focus on studying the statistics
of interparticle interactions to quantify the effective stiffness
of bonds [33] in simulated glasses as the prestress is perturbed
away from marginality [3].

In addition, a more concrete connection will require us
to extend the insight from our simple model to higher di-
mensions. We see an ω4 regime when bond strengths are
uniform, but it is unclear what quantity would be analogous
to a uniform bond weight in a d×d subblock in a ran-
dom matrix. Concurrent work by Benetti et al. focused on
d-dimensional Laplacian matrices where the magnitude of
each bond is unity, but the geometry of the bond is randomly
distributed, and these also generate scaling consistent with ω4

at low frequencies [34]. Benetti et al. show this scaling in
a higher-dimensional model also requires a network that is

nearly isostatic. We are hopeful that in future work we may be
able to connect our analytic results to these numerical ones in
higher dimensions. One possible avenue is to study whether
the geometric disorder in the model by Benetti et al. requires
some interactions between nodes to be effectively zero along
special soft directions.

Furthermore, although ω4 scaling as been observed in
several glass-forming systems [7], the ω3 regime may be
unique to 1D systems, because it has not been reported in sim-
ulations or in the random matrices with 3×3 subblocks [34].
In addition, we see about half a decade of frequency consistent
with ω4 scaling, while the most recent data from Lerner and
collaborators [7,9,32] find almost a full decade.

Nevertheless, the ω3 scaling regime is interesting. Dis-
ordered rings are well studied, but major results focus on
localization caused by disorder [35,36]. To our knowledge,
the finite-size scaling effects of the vibrational spectrum have
not been discussed previously. Our model demonstrates that
finite-size effects in the disordered ring, such as this gap-
less low-frequency scaling, can be promoted into properties
that are maintained in the thermodynamic limit by network
disorder.

Although we have excellent understanding of the ω3

regime in this simple model, and convincing numerical ev-
idence demonstrating D(ω) is consistent with ω4 scaling
over a window of about half of a decade in ω, we have not
identified a mechanism to understand this regime, where we
know the assumption of two weak bonds and two rigid arms
breaks down. In this analysis we have restricted ourselves
to two-cuts, where only two weak bonds are involved in a
mode. However, one can consider higher order cuts, where
we remove more than two bonds and yet which still have
relatively low energies. These higher order cuts have been left
for future work due to the specialized techniques for finding
such partitions, like spectral clustering [37], which are beyond
the scope of this work.

One possible avenue for understanding this regime is
suggested by recent numerical work that shows universality
in the eigenvector statistics associated with the boson peak.
Specifically, eigenstatistics in jammed packings match those
from both the random matrix model described here, as well as
the dense limit of this model where all nodes are connected
to one another [6]. Interestingly, the eigenvector statistics are
also identical in a much simpler model which is just the sum
of a diagonal matrix and a Gaussian orthogonal matrix. Very
recent analytic work suggests that such matrices are marginal;
they are on the edge of a nonergodic localized phase [38].
It would therefore be very interesting to extend this analytic
work to sparse matrices and study the tail of the density of
states.

Another way to extend our model is to alter the loop struc-
ture of the underlying graph. In our random matrix model, the
loop structure is uncontrolled since we add crossbonds with
uniform probability across the graph. This is different from
jammed systems where neighbors of one particle are more
likely to be neighbors of each other and loops are small. It
is fairly straightforward to extend our analytic analysis of the
ω3 regime to random matrix models with smaller loops, and
we expect that the prefactor and the onset of the scaling ωe
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will change, but the ω3 scaling will not. However, this change
could impact the behavior of the ω4 regime.

ACKNOWLEDGMENTS

We thank Fernanda Benetti, Gabriele Sicuro, and Giorgio
Parisi for discussions. This work was partially supported
by the Simons Foundation Grant No. 454947 (E.S., P.M.,
M.L.M.) and by NSF-DMR-1352184 (E.S., M.L.M.). Com-
putational resources were provided by support from Syracuse
University and NSF ACI-1541396.

APPENDIX A: EXTREMAL STATISTICS
IN THE TWO-REGULAR GRAPH

In this appendix, we calculate the scaling for a ring of
N particles and a ring with crossbonds where particles are
bonded to their nearest neighbors and the strengths of those
bonds, {bi}, are chosen independently with the distribution
f (b). (It is also assumed that the masses of the particles are
identical.)

The mode associated with exciting only the two weakest
bonds is a very low-energy mode. The calculation here is done
by taking the two weakest bonds as they are, but assuming
all other bonds are rigid. A simple sketch highlighting the
weakest bonds is shown in Fig. 5.

We will call the strength of these bonds k1 and k2 with
a distance of m nodes between the bonds. This system is
equivalent to two masses joined by a spring which has one

nontrivial mode with a frequency of
√

N (k1+k2 )
m(N−m) ≡

√
Ns

m(N−m)

where s = k1 + k2.
The distribution of the weakest bond strength is given by

ρ1(k1) = Nf (k1)[1 − F (k1)]N−1, (A1)

which is just the probability density of a bond having strength
k1 multiplied by the probability that all other bonds are at least
that strong [39]. The distribution of the second lowest mode
is somewhat more complicated since we need to enforce that
k2 � k1. So the distribution of k2 given k1 is

ρ2(k2|k1) = (N − 1)θ (k2 − k1)

[1 − F (k1)]N−1
f (k2)[1 − F (k2)]N−2. (A2)

FIG. 5. A ring or periodic 1D spring system with the two weakest
bonds highlighted as springs.

The frequency depends on the sum s = k1 + k2. The dis-
tribution of this sum can be obtained from the convolution of
the distribution of k1 and k2:

ρs (s) =
∫ kmax

kmin

ρ1(k1)ρ2(s − k1, k1) dk1, (A3)

ρs (s) = N (N − 1)
∫ kmax

kmin

f (k1)f (s − k1)

× [1 − F (s − k1)]N−2θ (s − 2k1) dk1. (A4)

By changing variables and assuming m is uniformly dis-
tributed, we can obtain the distribution of the frequencies as

ρω(ω) =
N−1∑
m=1

ρs

(
m(N − m)

N
ω2

)
2m(N − m)

N (N − 1)
ω. (A5)

1. Power-law distribution

Let f (b) = α+1
Lα+1 b

α and F (b) = ( b
L

)
α+1

under the limit b ∈
[0, L] and α > −1. In the main text, we define L = 2+α

1+α
such

that the mean of the distribution is 1. By substitution, we find

ρs (s) = N (N − 1)(α + 1)2

L2(α+1)

∫ L

0
θ (s − k1)θ (L − s + k1)

× θ (s − 2k1)kα
1 (s − k1)α

[
1 −

(
s − k1

L

)α+1
]N−2

dk1.

(A6)

These step functions are only nonzero in the range
max(0, s − L) � k1 � s/2. Using this information and a
change of variables, k = sq, we can extract the primary
contribution of s:

ρs (s) = s2α+1 N (N − 1)(α + 1)2

L2(α+1)
θ
(
L − s

2

)

×
∫ 1

2

max(0,1− L
s

)
qα (1 − q )α

{
1−

[
s(1 − q )

L

]α+1
}N−2

dq.

(A7)

Under the assumption that s is small, such that{
1 − [

s(1−q )
L

]α+1}N−2 ≈ 1 (we will discuss the range of va-
lidity of this assumption below), the density of states for large

N can be found via direct integration of
∫ 1

2
0 [q(1 − q )]αdq =

�(α+1)2

2�(2α+2) :

ρs (s) ≈ s2α+1 N (N − 1)(α + 1)2

L2(α+1)

�(α + 1)2

2�(2α + 2)
, (A8)

ρω(ω) ≈ N�(α + 1)2(α + 1)2

�(2α + 2)L2α+2
ω4α+3

N−1∑
m=1

[
m(N − m)

N

]2α+2

.

(A9)

By converting the sum over m into a similar integral over m
N

we have

ρω(ω) ≈
√

π (α + 1)2(2α + 2)�(α + 1)2

24α+5�
(
2α + 7

2

)
L2α+2

N2α+4ω4α+3. (A10)
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FIG. 6. A sketch of a crossbonded network with 56 particles and
seven crossbonds. The green arrows delineate the regions between
crossbonds where two edges can disconnect the network. The red
arrows point out edges that can’t disconnect the network. The yellow
arrows point out sets of edges that would disconnect the network that
aren’t between crossbonded nodes.

Since this applies only to the lowest vibrational mode, the
density of states is given by ρω/N :

D(ω) ≈
√

π (α + 1)2(2α + 2)�(α + 1)2

24α+5�
(
2α + 7

2

)
L2α+2

N2α+3ω4α+3. (A11)

APPENDIX B: EXTREMAL STATISTICS IN THE
TWO-REGULAR GRAPH WITH ADDITIONAL BONDS

A more generic system is the ring with crossbonds. These
crossbonds are simply additional connections between par-
ticles that are nonadjacent in the ring. See Fig. 6 for an
example of a crossbonded graph; although the sketch is two-
dimensional, the crossbond interaction depends only on the
distance along the ring, not the Euclidean distance across the
ring.

With crossbonds, we are restricted to choosing bonds in
a region between two crossbonded nodes. These regions are
shown in Fig. 6 by the green arrows.

1. Distribution of bounded regions

Let m1 be the number of edges between crossbonded
nodes.

We place the crossbonds randomly. Therefore the cross-
bonded nodes are chosen uniformly. If we have E crossbonds,
then there are 2E crossbonded nodes (which may not be
unique). The increase in average coordination number is given
by δz = 2E

N
. So the number of crossbonds and crossbonded

nodes are Nδz
2 and Nδz, respectively.

Since these are uniformly placed, we can expect the dis-
tance between them to be defined via a Poisson process.
We can find the distribution of the second crossbonded node
where we set the first crossbonded node to 1, since we can
always rotate along the ring. Order statistics provide the

following result:

p1(m1) =
(
1 − m1

N

)Nδz−1

∑N−1
m=0

(
1 − m

N

)Nδz−1 ≈ eδz − 1

eδz
e−m1δz. (B1)

This distribution very quickly approaches the thermodynamic
expression of an exponential decay.

2. Crossbonded spectrum

For each chain of length m1, we choose the two weakest
bonds where the bonds are chosen from the distribution
f (b) = α+1

Lα+1 b
α under the limit b ∈ [0, L] and α > −1. In

the main text, we define L = 2+α
1+α

such that the mean of the
distribution is 1. We can write ρs (s) as

ρm1
s (s) = (α + 1)2m1(m1 − 1)

L2(α+1)
s2α+1θ

(
L − s

2

)

×
∫ 1

2

max(0,1− L
s

)
qα (1 − q )α

{
1−

[
s(1 − q )

L

]α+1
}m1−2

dq.

(B2)

We assume small s, such that
{
1 − [

s(1−q )
L

]α+1}m1−2 ≈ 1.
Following the same argument from the previous section where
m2 is the number of nodes between the weakest bonds, we find
the distribution:

ρω(ω) = ω4α+3 �(α + 1)2(α + 1)2

2�(2α + 2)L2α+2

eδz − 1

eδz

×
N−1∑
m1=2

e−m1δzm1

m1−1∑
m2=1

[
m2(N − m2)

N

]2α+2

. (B3)

We take the thermodynamic limit and approximate the sums
as integrals (over x = mi

N
and dx = 1

N
) and expand the result

in the low δz limit to obtain

ρω(ω) = �(2α + 5)�(α + 1)2(α + 1)2

2(2α + 3)�(2α + 2)L2α+2

ω4α+3

δz2α+4
. (B4)

Importantly, this is not just for the smallest mode. Since
there are several regions on the ring from which pairs can
be chosen, this analysis an extensive fraction of modes. On
average, there are Nδz regions separated by crossbonded
nodes. Therefore, we can apply this analysis for the lowest
Nδz modes of a total N modes, i.e., a fraction of modes δz.
The density of states is given by ρω(ω) ∗ δz:

Dα (ω) = �(2α + 5)�(α + 1)2(α + 1)2

2(2α + 3)�(2α + 2)L2α+2

ω4α+3

δz2α+3
. (B5)

TABLE I. Best fit to our numerical data for the scaling exponent
ψ in Eq. (B7), for different values of δz.

δz ψ

0.1 4.0761
0.168 4.0115
0.282 3.9606
0.476 3.9496
0.8 3.9749

042908-6
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FIG. 7. IPR at a fixed δz = 0.1, with system sizes varying from
300 to 1000 in steps of 100. The black dashed line indicates ω∗.

Note that α = 0, the uniform distribution, is unique in that
ω and δz have the same exponent

D0(ω) = 4

L2

(
ω

δz

)3

. (B6)

3. Full spectrum

In the full spectrum we need to identify the frequency,
ω∗, at which the spectrum crosses over into a plateau. In
disordered solids, there are ample examples of this cutoff
scaling linearly with δz; this is also true for the disordered ring
with crossbonds. ωe scales linearly with δz for only α = 0.
Therefore it is only for α = 0 that the scaling between ωe and
ω∗, ψ , is independent of δz.

So the full spectrum of α = 0 is given by

D(ω) =

⎧⎪⎪⎨
⎪⎪⎩

4
L2

(
ω
δz

)3
ω � ωe(

4ω
3−ψ
e

L2δz3

)
ωψ ωe � ω � ω∗

c ω∗ � ω

. (B7)

In practice, ψ is consistent with 4, see Table I. After finding
the ωe/δz that best separates the low frequency regime for
δz = 0.168, chosen for numerical stability, and using this ratio
for all δz values, we find the scaling in the intermediate regime
is consistent with 4 independent of δz.

4. Behavior of sloshing modes

The value of the IPR for a sloshing modes depends explic-
itly on the distance between the active bonds. If the active

FIG. 8. The BIPR with the frequency rescaled by δz, ω′ = ω/δz.
The blue dashed line indicates ωe, and the black dashed line indicates
ω∗.

bonds are separated by m particles, the IPR is given by

Y = 1

m
+ 1

N − m
− 3

N
. (B8)

Thus the increasing of the IPR plateau with δz in the
sloshing regime is indicative of a decrease in the distance
between active bonds. By construction of the crossbonded
system, the distance between active bonds is limited by
the distance between crossbonded nodes, which decreases
with δz.

Figure 7 shows the IPR for varying system sizes, indicat-
ing that the IPR is independent of system size in the low-
frequency regime, while modes in the boson peak are strongly
dependent on system size. We find that the low-frequency
regime collapses, and the behavior of the system below ω∗
is independent of system size.

We can also measure the participation of the bonds with
what we call the bond inverse participation ratio (BIPR):

Yb(ω) =
∑

(i,j )(vi − vj )4(∑
(i,j )(vi − vj )2

)2 , (B9)

where (i, j ) is an edge in the network. In the limit of low
frequency, there is a plateau of BIPR = 1

2 , as seen in Fig. 8,
which indicates that only two bonds are extending or com-
pressing for the modes in that regime. This is secondary
confirmation that the sloshing mode assumption is reasonable
for this simple model.
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